797PCP-2K Modular Manifolds Instructions

Introduction

These instructions provide installation and connection procedures for the modular manifolds and pressure sensors designed for use with 797PCP-2K progressive cavity pumps.

The flush-diaphragm pressure sensor can be installed in a two-component (2K) modular manifold and connected via signal conditioner to a control system, typically a programmable logic controller (PLC).

The sensor monitors the fluid pressure (not the flow rate) of the Part A and / or Part B fluids flowing through the modular manifold, allowing you to quickly identify an increase or decrease in pressure that could affect the mix ratio in a 2K application.

NOTES:

- A pressure sensor monitors increases or decreases in fluid pressure. It does not monitor flow rate.
- The modular manifold can be used with or without sensors. Unused sensor ports are plugged.

Configuration Options

The following 797PCP-2K modular manifold options are available:

- a. Manifold for use with bayonet mixers
- b. Manifold for use with standard bell mixers with a retaining nut

Modular manifold for standard bell mixers

Specifications

NOTE: Specifications and technical details are subject to change without prior notification.

Modular Manifold

Item	Specification
Number of sensors	1 or 2 (empty sensor ports are plugged)
Sensor port size	1/2-20 UNF x 10.5 mm (0.400") thread depth
Sensor geometry	Flush diaphragm sensor, face-mounted
Manifold outlet	Bayonet or bell
Material	Anodized aluminum
Approvals	RoHS, REACH

Pressure Sensor

Item	Specification			
Pressure sensing capability	0–20.7 bar (0–300 psi)			
Accuracy	1.0% linearity and hysteresis combined			
Repeatability	±0.1% of full-scale output			
Balance	±2.0% of full-scale output			
Compensated temperature range	16–71° C (60–160° F)			
Thermal effects	Zero: ±0.01% FS/°F Span: ±0.02% FSO/°F			
Proof pressure	150% of capacity			
Burst pressure minimum	300% of capacity or 30,000 psi, whichever is less			
Electrical connections	4-conductor cable			
Pressure connection	1/2-20 UNF-2A			
Wetted parts	17-4 PH stainless steel			

Signal Conditioner

Item	Specification
Output	4-20 mA or 0-10 V (USB configurable)
Supply	24 VDC (typical)

797PCP-2K Modular Manifold Components

- a. Modular manifold, port plugs, and retainer for bayonet or bell mixers (bayonet manifold shown)
- b. Pressure sensor(s) with attached cable, 1.5 m (59") long NOTE: Cables not shown.
- c. Signal conditioner(s)

Typical System Layout

NOTE: This system layout illustration is for reference purposes only to show the connections in a typical 797PCP-2K system with a modular manifold and two pressure sensors.

Installing the Modular Manifold

Follow this procedure to install the modular manifold.

NOTE: During disassembly, observe the position of the pump components in relation to each other. Nordson EFD recommends marking the position of the components and numbering them consecutively.

Required Tools

Preparation

Perform these steps as needed based on the installation / operational status of your fluid dispensing system.

- 1. Shut off the air supply to the system.
- 2. Stop the fluid supplies to the pumps and disconnect fluid supply tubing.
- 3. Disconnect the pump motor cables from the controllers.
- 4. Remove the pumps from the pump bracket.
- 5. Remove the mixer.

Manifold Installation

 Use an M3 hex wrench to loosen the dog head set screws that secure the manifold, then remove the standard 2K manifold.

- 2. Use the dog head screws supplied with the modular manifold to install it on the pumps.
- Thread the pressure sensor(s) into the M8 port(s) on the modular manifold and tighten them to 2.3 N•m (20 in.-lb).

NOTE: One or two pressure sensors can be installed. If a second pressure sensor is not used, leave the plug in the unused pressure sensor port.

Manifold installation is now complete. Install the mixer retainer and the mixer, reinstall the pumps on the production line, and restore the system to normal operation.

Dog head

screw (4x)

Making the System Connections

The pressure sensors require a 5 V power supply connection to the inputs. Because the sensor output at its maximum is 10 mV, a signal conditioner is used to amplify the output to 0–10 V (typical for PLC voltage inputs). A power supply set to 24 V is required to power the signal conditioner.

Customer-Supplied Items

- 5 V power supply for each pressure cable
- 24 V power supply for each signal conditioner
- Mounting hardware for the signal conditioner

Connect the Pressure Sensor Cables and Mount the Signal Conditioner

1. Connect each pressure sensor cable to the pressure sensor installed on the manifold.

2. Mount the signal conditioner for each pressure sensor cable in a suitable location, ensuring that the pressure sensors cable wiring can be easily connected to the signal conditioner.

Connect the Wiring

Risk of equipment damage. Do not reverse the positive and negative connections of the sensor. Doing so will damage the sensor beyond repair.

- 1. For each connected pressure sensor cable, connect the following wires to the signal conditioner inputs:
 - Red wire to J7:08 on the signal conditioner
 - Black wire to J7:11 on the signal conditioner
 - Green wire to J7:07 on the signal conditioner
 - White wire to terminal J7:10 on the signal conditioner
- 2. Connect the signal conditioner outputs to the PLC analog inputs:
 - J7:04 to the PLC CON2:1 input
 - J7:05 to the PLC CON2:2 input

NOTE: If the default VOUT (Voltage Output) connection causes a voltage drop error across the cable length, use the IOUT (Current Output) connection instead. Refer to "Optional Wiring Configuration: IOUT (Current Output)" on page 7. The IOUT output from the signal conditioner is 4–20 mA.

- 3. Connect the signal conditioner power inputs to a 24 V power supply:
 - J7:01 to +24 V on the power supply
 - J7:02 to the negative (ground) terminal on the power supply

Wiring connections using the VOUT terminals of the PLC and signal conditioner

NOTE: If the VOUT (Voltage Output) connection causes a voltage drop error across the cable length, use the IOUT (Current Output) terminals instead. Refer to "Optional Wiring Configuration: IOUT (Current Output)" on page 7. The IOUT output from the signal conditioner is 4–20 mA.

Connect the Wiring (continued)

Optional Wiring Configuration: IOUT (Current Output)

To use this optional wiring configuration, you must configure the signal conditioner for current output (mA). Continue to "Configure the Signal Conditioner" on page 8 to select the current output setting.

Optional: Wiring connections using the IOUT terminals of the PLC and signal conditioner

Configure the Signal Conditioner

Use the signal conditioner software to configure the signal condition for voltage output (V) (the default configuration) or current output (mA).

1. Connect a USB cable (A-male to mini-B) between the signal conditioner and the PC.

NOTE: Use a cable length that is appropriate for your setup.

2. Download the signal conditioner software. Go to the URL below, find the signal conditional model (TXDIN1600S), and obtain the software from the Manuals & Downloads tab.

https://www.omega.com/en-us/data-acquisition/signal-conditioners/din-rail-signal-conditioners/p/TXDIN1600-Series-Tx

Output Type		Output Class		Input Type		
2 Relays	•	Relay	•	TC, RTD, mA, mV		
Input Class		Input Ranges		Supply Voltage Type		
Universal		See Detail Specs		DC		
Isolation		Programability				
500 V		Pushbutton/Software				
			Manuale &	Questions &		
Specs	All Models	Reviews	Manuals & Downloads	Questions & Answers		
Specs	All Models	Reviews	Manuals & Downloads	Questions & Answers		
Specs	All Models	Reviews	Manuals & Downloads	Questions & Answers		

3. Install the application on your PC and open the application.

Configure the Signal Conditioner (continued)

- 4. In the signal conditioner software, do the following:
 - a. Under Output Signal, select the correct radio button:
 - If you used the voltage output (VOUT) connections: Select ${\bf v}$
 - If you used current output connections (IOUT): Select mA

▲ CAUTION

If calibration certificate values are entered incorrectly, the accuracy of the measurement will be compromised.

- b. Under Calibration factor, enter the exact values from the Calibration Certification for the following:
 - Calibration Factor
 - Balance

Refer to "Calibration Certification" on page 10 for a copy of the Calibration Certification.

NOTE: PV stands for the pressure range of the sensor.

Configure the Signal Conditioner (continued)

Calibration Certification

	T N C ·
PRESSURE TRANSDUCER FINAL CALIBRATION	
0.00 - 300.00 PSIG Excitation 5.000 Vdc	
Job: WHS0069829 Serial Model: PX61V0-300GV Tested By Date: 8/9/2023 Temperature Range Calibrated: 0.00 - 300.00 PSIG Specfile	: 740832 : CMD . : +60 to +160 F : PX61V+=100
Pressure Unit Data PSIG mVdc	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Balance 0.081 mVdc	- Enter this value for Balance
N Resist 377.20 Ohms	• •
Out Resist 352.30 Ohms	
Callibration Factors: Sensitivity = 2.079 mV/V	 Enter this value for Calibration factor
ELECTRICAL LEAKAGE: PASS RESSURE CONNECTION/FITTING: 1/2-20 UNF-2A LECTRICAL WIRING/CONNECTOR: RED = +INPUT (EXC) BLACK = -INPUT (EXC) GREEN = +OUTPUT WHITE = -OUTPUT	
This Calibration was performed using Instruments ar traceable to the United States National Institute of S/N Description Range 41000891/6 AUTO Mensor 1500PSI 0 - 1500.00 PSIG JS37046202 AT34970 DMM Unit Under Test 4Y44002077 AT34970 DMM Unit Under Test	nd Standards that are of Standards Technology. Reference Cal Cert C-3034 C-3034 C-1315 C-1315 C-1284 C-1284
This Calibration was performed using Instruments ar traceable to the United States National Institute of S/N Description Range 41000891/6 AUTO Mensor 1500PSI 0 - 1500.00 PSIG JS37046202 AT34970 DMM Unit Under Test 4Y44002077 AT34970 DMM Unit Under Test 2.A. Representative : Chris Diag Da	nd Standards that are of Standards Technology. Reference Cal Cert C-3034 C-3034 C-1315 C-1315 C-1284 C-1284 Ate: 8/9/2023
This Calibration was performed using Instruments ar traceable to the United States National Institute of S/N Description Range 41000891/6 AUTO Mensor 1500PSI 0 - 1500.00 PSIG JS37046202 AT34970 DMM Unit Under Test 4Y44002077 AT34970 DMM Unit Under Test 2.A. Representative : Chris Diag Da This transducer is tested to & meets published specification controlled in a bonded storage location until sold. The reca this product should not exceed either (A) one year from the (B) five years from the date on this certificate, whichever Calibration cycles less than the provided guidelines should customer's quality management system.	nd Standards that are of Standards Technology. Reference Cal Cert C-3034 C-3034 C-1315 C-1315 C-1284 C-1284 Ate: 8/9/2023 As. This product is libration date of date of shipment or is less. be managed per the

Configure the Signal Conditioner (continued)

- i00S Smart Powered StrainBridge/Load Cell input Current/Voltage Output conditioner X 5 🚱 1 M+ M 0 3 TARE DATA LINSOR Model Clear Model ? Input Signal 2.000 ≑ mV/V **Calibration factor** + Set Point 0.000 mV Sensitivity @ 5.0 V dc 10.000 mV Correction 0.000 + Balance @ 1 Volt 0.000 🗧 mV Filtered Input Signal Tag mV RANGE PV Range in Process Sample Rate 10 SPS V Filter 0 ‡ 0.000 **† To 100.000** PV SCALE INPUT SIGNAL TO PROCESS Active Trim % Output Signal Input signal mV values @ 5 V dc excitation. Low High % Points mV PV 2 ≑ 0.000 0.000 OUTPUT SIGNAL **Output Signal** 10.000 100.000 ν Units ⊖ ±v \circ v • mA PV 0.000 🗧 to 10.000 🛟 USER MANUAL FUNCTIONS User Trim Button Lock Off 🗸 Active Sample Remote Tare Lock Off ~
- 5. Click the SEND icon to send the setting to the signal conditioner.

6. Click the READ icon to read the current configuration of the connected signal conditioner.

SENSOR	Model	Model ?		TARE Clear DATA	
Calibration fa Sensitivity @	actor 5.0 V dc	2.000	mV/V mV m mV m	Set Point 0.000	m
Balance @ 1 Volt 0.000 + mV Tag			÷ mV	Correction 0.000 🗧 Filtered Input Signa	ıl
				RANGE	m
Sample Rate	10	SPS v Filter	0 🗧	Range in PV Process	
	TOIONIAL	TO 0000000		0.000 🕆 To 100.000 ᅷ	Р
III Input sign	al mV val	ues@5Vdce	xcitation	Active Trim % Output Signal	
Points	mV	PV		Low High	%
2 ≑	0.000	0.000		OUTPUT SIGNAL Output Signal	
Units	10.000	100.000			v
PV					
				0.000 - to 10.000 -	
				USER MANUAL FUNCTIONS	

Cleaning a Pressure Sensor

Cleaning is needed after every use, as well as anytime a pump is fully disassembled. Because the sensors are a flush-diaphragm type, there is no orifice.

Carefully clean the stainless steel diaphragm using isopropyl alcohol (IPA) and clean rag or a brush. The remainder of the sensor can be cleaned using any cleaning solution suitable for stainless steel.

▲ CAUTION

Risk of equipment damage. Do not submerge a pressure sensor, insert anything inside a sensor, or use compressed air to clean a sensor. Doing so can damage the sensor.

Diaphragm (clean with IPA)

 Clean with any cleaning solution suitable for stainless steel

Part Numbers

The modular manifold options are based on viscosity / mix ratio. Examples are provided below:

- For a 1:1 fluid ratio mix, use a 2 mm x 2 mm bayonet manifold or 5 mm x 5 mm bell manifold.
- For a 4:1 or 10:1 fluid ratio mix, use a 2 mm x 4 mm bayonet manifold or 2 mm x 5 mm bell manifold.

NOTE: If the viscosity of a Part B fluid is much lower than a Part A fluid, Nordson EFD recommends using a 2 mm x 4 mm bayonet manifold or a 2 mm x 5 mm bell manifold to provide an offset orifice, thus creating a pressure differential for sensor function / sensitivity.

Pressure Sensor

Order pressure sensors separately. Each pressure sensor includes a signal conditioner.

Part #	Description
7265000	Kit, pressure sensor with signal conditioner
7303999	NOTE: The pressure sensor cable is 1.5 m (59") long.

Bayonet Manifolds

This manifold type is for use with bayonet mixers. Each manifold kit includes the following components:

- Modular manifold for bayonet mixers
- Mixer retainer and screws
- Two (2) sensor port plugs with O-rings

Part #	Manifold Type	Manifold Option (mm)	Sensor Port Size
7365963	Bayonet	2 x 2	1/2-20 UNF x 10.5 mm (0.400") thread depth
7365965	Bayonet	2 x 4	1/2-20 UNF x 10.5 mm (0.400") thread depth

Bell Manifolds

This manifold type is for use with standard bell mixers with a retaining nut. Each manifold kit includes the following components:

- Modular manifold for bell mixers
- Mixer retainer and screws
- Two (2) sensor port plugs with O-rings
- 20 FFKM O-rings (installed between the manifold and the mixer retainer)

Part #	Manifold Type	Manifold Option (mm)	Sensor Port Size
7365983	Bell	2 x 5	1/2-20 UNF x 10.5 mm (0.400") thread depth
7365985	Bell	5 x 5	1/2-20 UNF x 10.5 mm (0.400") thread depth

For Nordson EFD sales and service in over 40 countries, contact Nordson EFD or go to www.nordsonefd.com.

Global

800-556-3484; +1-401-431-7000 info@nordsonefd.com

Europe

00800 7001 7001 infoefd.europe@nordsonefd.com

Asia

China: +86 (21) 3866 9006; china@nordsonefd.com India: +91 80 4021 3600; india@nordsonefd.com Japan: +81 03 5762 2760; japan@nordsonefd.com Korea: +82-31-736-8321; korea@nordsonefd.com SEAsia: +65 6796 9522; sin-mal@nordsonefd.com

©2023 Nordson Corporation 7366153 v102623